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PULSE COMPRESSION DEGRADATION DUE TO OPEN
LOOP ADAPTIVE CANCELLATION, PART I

1. INTRODUCTION

An adaptive canceller 11] adjusts the auxiliary channel settings so as to null out interference in
the main channel (Fig. 1). The weights of the auxiliary channels are adjusted to minimize the output
noise power residue. If the noise environment is not known a priori, these weight settings must be
estimated from a finite set of incoming data on the input channels. Thus, the weight settings will
have perturbations about the quiescent optimum weight settings. These perturbations cause, for exam-
ple, the output noise power residue to rise [1-41, and if the adaptive canceller is used in the sidelobe
antenna canceller configuration, the adaptive array antenna sidelobe level to increase [51.

Fig. I - Adaptive canceller

A pulse compressor is essentially the matched filter for a given radar waveform. Most of the
energy in the received radar waveform is compressed into a given single-range cell and, thus, the sig-
nal level can be increased significantly for detection purposes. However, some energy does leak into
the sidelobes of the compressed pulse response, resulting in low gain in range cells outside of the
given range cell. If a target or piece of clutter is large enough, it can break through and be detected
in these range sidelobes, falsely indicating a target detection or masking a real target. Thus, it is
highly desirable to maintain a low sidelobe response.

Manuscript approved February 11, 1991.
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For the radar designer there is the choice of where to put the pulse compressor: before or after
the canceller. A disadvantage of placing it before the canceller is that a pulse compressor must be
placed in each antenna channel (main and auxiliaries) to maintain channel match. Another disadvan-
tage is that the pulse comoressor must have the dynamic range of the interference (Ipossibly clutter and
jamming) which has yet to be cancelled. These disadvantages do not exist if the pulse compressor is
placed after the canceller. However, a disadvantage of placing the pulse compressor after the can-
celler is that the range sidelobe levels of the compressed pulse increase because a finite number of
samples is used to compute the canceller weights. (We assume that the canceller weights are
estimated from a block of input data and applied back onto the same input data set.) Hence, the
designed radar waveform pulse compressor responses may not be achieved because of the interaction
of the canceller with the pulse compressor. Because of the higher sidelobes, unwanted targets may
break through and be detected. Significantly, as it will be shown, the maximum sidelobe levels that
result from interacting with the canceller are independent of whether the input waveform was
compressed before or after the canceller if the uncompressed pulse is completely contained within the
samples that are used to calculate the canceller weights.

This report considers the degradations that result when trying to match-filter or pulse-compress a
desired radar waveform after it has been processed through a particular adaptive canceller called the
Sampled Matrix Inversion (SMI) algorithm [2]. The SMI algorithm is an open-loop, rapidly converg-
ing adaptive canceller implementation whose noise power convergence rate is independent of the
exeral' no L VIIv IJ$iLet. 2 mA sang years, 1i hasG UAeen conskkitLere i a baseuine u or15 fista convtertgiLng

adaptive canceller algorithms. The Gram-Schmidt (GS) canceller [4, 6-81 is a numerically equivalent
implementation (assuming infinite accuracy) of the SMI algorithm with excellent performance simul-
taneously in arithmetic efficiency, stability, and convergence. In addition, it is a good analytical tool
14,51 with which to investigate the convergence properties of the SMI canceller. Because of the
SMI's complexity, we assume that it is implemented digitally. Because the pulse compressor follows
the canceller, we assume that it is also implemented digitally.

This report is laid out as follows. Section 2 briefly describes the GS canceller and Section 3
presents the signal model (for pulse compression). Some past results on GS cancellers are reviewed
in Section 4. Sections 5 through 7 derive the analytical results and Section 8 discusses them.

For some applications, the matched filter is replaced by a filtering scheme that reduces the range
sidelobes at the expense of signal gain at the matched point. Thus, a mismatched filter is used. It is
shown that the results derived for the matched filter are applicable to the mismatched filter.

2. THE GS CANCELLER

Consider the general N-input Gram-Schmidt canceller structure as shown in Fig. 2. Let XM(t),
1 0, .i, - -x I(t) represent the complex data signals in the Oth, Ist, . N.., - Ith channels,

respectively. We call the leftmost input xM(t) the main channel and the remaining N - I inputs, the
auxiliary channels. The main channel's signal consists of a desired signal plus additive noise (i.e.,
internal plus external noise). Cancellation of the signals from external interfering sources relies on
the correlation of simultaneously received signals in the main and auxiliary channels. The internal
noises on each channel are assumed to be uncorrelated between channels. The GS canceller decorre-
lates the auxiliary inputs one at a time from the other inputs hy using the basic 2-innut GS nroressor
as is shown in Fig. 3. For example, Fig. 2 shows that XN4I(t) is uncorrelated with x@(t).
xW2) (r) . . . , x)_ 2 (t) in the first level of decomposition. Next, the output channel that results from

2
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Fig. 2 - GS structure
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Fig. 3 - Basic 2-input GS canceller

decorrelating xN 1 (t) With XN -2 (i), is decorreiated rom the other outputs of the first-tevel WSs. The
decomposition proceeds until a final output channel is generated. If the decorrelation weights in each
of the 2-input GSs are computed from an infinite number of input samples, then the main output chan-
nel is totally decorreiated with the input: x1 I), x2 (t), -. .7 X1(t). Also, x-l)(t),
n = , ... , iv - I are pairwise statistically uncorrelated or orntogonal.

If an infinite number of input samples is not used then the decorrelation weights associated with
each 2-input GS canceller are estimated by using finite averaging, One method of processing data
urtuugii tLe GS. C4anjelle is cal2ed eoneurrent processiLLg Uecause the wegts are esimteLdLCU mU aI

block of input data and applied back onto the same input data set. (For a discussion of other types of
GS processing, see Ref. 4.) This type of processing is often necessary to handle blinking interference
sources.

We briefly describe the concurrent GS canceller. Let x~M) represent the outputs of the 2-input
GSs on the Im - i) level. Then outputs of the 2-input GSs at the mth level are given by

fn = t) 1 IV .,I " ((m l) = (m) _ im)x(Wm) ', '. I
Xn -y n YWn N- m m = 1, 2. N _;M 

Note that xV x4. The weight w&n), seen in Eq. (1), is computed so as to uncorrelate x.(+ *
n = O , . . .,71' I - I Wit AN i I rI F oI inpUL SaLLLIpt peri LIdIIIIL, LI.hi weL.Iht 13 VesnL4ULt

as
K

3 2Tim * (k)X($7(k)
mJ k =I 

22 T tm(k)K1 
k da

where *denotes, the complex conjugate and - I is the magnitude. H~ere k indexes the sampled} data.

4
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Let x0 represent the additive noise in the main channel. For this development, we make the fol-
lowing five assumptions:

1. The x0 , x1I ... , xNI are identically distributed Gaussian complex random variables
(r.v.).

2. These same r.v.s are samples from stationary processes with zero mean.

3. xn (k 1 ) is statistically independent of x,,2 (k 2) for k1 * k 2 .

4. The desired signals are not present in the auxiliary channels.

5. K> Al

It is necessary to make the last assumption because for K < N - 1 the GS canceller is numeri-
cally unstable because of the singularity of the estimated input covariance matrix, and for K = N - 1
the output of a concurrent GS canceller is always zero [4]. In the following discussion, a normalized
L-length multivariate complex circular Gaussian vector is defined to have L elements, each of which
has real and imaginary parts that are independent Gaussian r.v.s with 0 mean and variance equal to
1/2 (the magnitude variance is one). In addition, the L elements are independent of one another.

Figure 4 presents simplified N-input GS canceller structures for concurrent processing. The
notation GSK,N indicates that an N-input GS structure uses K samples from each channel to compute
the weights interior to the GS structure. The 0th channel (the far left channel in Fig. 2 or 4) is
always designated as the main channel and the others are called the auxiliary channels (or just
AUXs). Figure 5 represents the GS structure with N orthogonal outputs displayed.

X M X1 XN.- 1

CONCURRENT

WEIGHTING

ZCw

Fig. 4 - Representation of GS canceller with N channels and
K samples per channel
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Fig. 5 - GS representation with N output channels

3. SIGNAL MODEL

A network whose frequency response function maximizes the output peak signal-to-mean noise
power (SIN) ratio is called a matched filter. Almost all radar receivers are designed by using the
matched filter criteria. If hQt) is the impulse response function of the matched radar receiver, s(t) is
the transmitted radar waveform, and the noise interference is white and additive, then it can be shown
t9-iI that

h(t) = s*(-t), (3)

where * denotes the complex conjugate operation.

A sampled matched receiver design is based on the same principle of maximizing S IN. We
sample the transmitted radar waveform at equal time intervals T. Let s 1, 52 v . , sr be the values of
the sampled transmitted waveform or code where L is the number of sampled points (Fig. 6). Set

S = (S 7 S2i .. . a SL)T' (4)

where T denotes the vector transpose operation. The sampled receiver applies a weighting vector
g = (g1 2, -.- ,L g such that

y = gTS.

It can be shown that (S IN) is maximized when

g = s*.

(5)

(6)

6
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St S2 S3

Fig. 6 Sample radar waveform

V(n)

Fig. 7 - Sampled matched filter

Figure 7 shows the matched receiver structure. Here U(n) is the received time sampled input
sequence consisting of signal plus noise. The received input sequence is convolved with conjugated
time reversed vector of s which results in an output sequence V(n). Mathematically, this is written

L-1
V(n) = , sl +iU(n + 1).

1=0

The sampled matched filter response of the desired signal vector s of length L is given by

(7)

L -ni

E S1S1+.'

L +nl

(=1

o C m S L - 1,

-r 1 -< _.- n
VLI 1) - r V w.

This sequence is 2L - I points long and is often called the autocorrelation function (ACF) of s 1,

7

S(t)

MATCHED

FILTER

SU(n)
n =0,1,2 ...

(8)

S L



KARL GERLACH

If we define

r (r(-(L -1)),..., rl ), r(Q), r(l). r(L -

L SL 0 0 0

SL-I SL 0 0

sL-2 SL-i _ L 0

ST = S S2 S3 St

o SI 52 SL |

.~ ~~ I . -- 2

0 0 ° SI

where r is a 2L - I length vector,
can show that

and S is a L x (2L - 1) matrix called the ACF matrix of s, we

r = Sts (I 1)

where t is the conjugate transpose operation,

We assume for this analysis that the GS canceller processes data in blocks of K data samples per
channel. Thus, the desired signal vector may be spread across a number of sample blocks. How-
ever, for this analysis, we assume the signal vector of length L is contained completely within the K
data samples. Hence L • K. A future report will consider the effects of signal segmentation (i.e.,
when the signal is spread across a number of sample blocks of length K). We define an augmented
signal vector saug of length K such that the first L elements are the elements of s and the remaining
elements are zero. Let s' be the resultant output vector after s has been processed through the GS
canceller and sgl be the resultant GS output augmented vector. This resultant output vector is then
input into the matched filter of the vector s, or equivalently saug. If we set r' equal to the response
of S Kg match filtered with sang then

(12)-' = StugS

where Sang is defined as the K X (2K - 1) augmented ALCF matrix of Sn,,,.

8

and
(9)
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The results and derivations to be presented are the same whether we use the augmented or non-
augmented notation. Hence, we assume that all vectors are augmented and drop the augmented desig-
nation. Note also that we have left-justified s in sang9 Actually s could start anywhere in sang; the
assumption that the s is left-justified is made for convenience's sake and does not change the results
of this analysis.

Often s is chosen so that the matched filter response has low sidelobes (i.e., r(m) < C r(O) for
m * 0). However, if the desired signal is passed through a GS canceller structure, the desired signal
vector is perturbed and degradations occur in the matched filter response. Examples of codes that
have high compression ratios and low sidelobes are the Frank Code [12], Lewis and Kretschmer's
PL-P4 code [131, and shift register codes (also see Ref. 14). All of these codes have an ACF with all
sidelobes well below the matched response. Figure 8 shows, for example, the ACF of the 100-
element Frank code.

10

-10-

-20-

W #

ir
a: -40-w

0 40 80 1 20 160 200

SAMPLE NUMBER

Fig. 8 - Frank code autocorrelation function L = 100,
zero Doppler shift and no bandwidth limitation

4. GS SIMPLIFICATIONS

This section discusses a number of results that significantly simplify the forthcoming analysis.
Let C be any (N - 1) x (N- 1) nonsingular matrix. It is well known [2] that transforming the
auxiliary input channels x l, . . ., - I by this transform does not change the transient or steady-state
noise power residue performance of the SMI (or GS). This is because the output from a canceller
with transformed auxiliaries is identical to the output from a canceller with untransformed auxiliaries.
The GS canceller implementation is equivalent to a matrix transforming the input channels. For a GS
canceller, the matrix C has the upper triangular matrix form. In the configuration illustrated in Fig. 9
the matrix transform C is implemented by passing the input channels through a GScCN structure fol-
lowed by a power equalizer on the output auxiliary channels. The output powers of the AUX chan-
nels after power equalization are equal to uanin. Without loss of generality, we can define nin = 1.

The structure shown in Fig. 9 illustrates that any GS canceller structure can be divided into two
parts: a deterministic steady state front-end processor, in which the main channel is decorrelated
from the auxiliary channels, and a stochastic back-end processor, which is driven by uncorrelated

9
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K2 N-i f nn=
2

en
MATRIX

0

Vfl V4 . .V.

UOKN

f CW

Fig. 9 - Residue equivalent GSK.N canceller using the power equalizer matrix

equal powered noise in each channel The back-end processor is independent of the input covariance

matrix, and the auxiliary weights associated with the back end processor go to zero as K - Go.

Hence, the convergence properties of the GS canceller can be studied by analyzing the convergence
properties of the back-end processor. Prnm this point on, we assume that the input channels are

orthogonal and of equal power.

A second matrix transform that significantly simplifies the forthcoming analysis is now dis-

cussed. L et d} be any KxK unitary matrix i.e. b4_ = 1,. where }K is the K X K identity matrix.

Let us transform each input channel data set x7, n 0, 1, 2, ... , N- I by '1 such that

(13)Yn = bxn X

10
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where Yr, n = 0, 1, . .. , N - 1 is the resultant output data set. If we input this data set into a
GSKN canceller then [4] the estimated weights using the x, input are identical to those using the y,
inputs.

Let

x, = (xjtl),xt(2), * * *Xn(K))T (14)

be the K-length input vector in the nth channel and

z = (z(l),z(2), .. ., z(K))T (15)

uc m uuputV~tUI n ~'-~K N '" '- 0 KI UdILII LdIMU11I~ MrO flfl1,tt5UL Uacta VL,%LLUni Al,iM yul output -vector 0f a GCKN. The 1rS.0KN acle rnfrs le-eg.hdt cosXe
X2, . . ., XN - into an orthogonal set of K-length data vectors z1, Z2 ,.. , ZN 1- In fact, it was
shown in Ref. 15 that

z= Gxo, (16)

where G is the GS complementary projection matrix given by

rt t
Z1 Z1 Z2 Z7 ZN-IZN-I - 1-

G = Ik l 1K
Z1 Z1 Z2 Z2 ZN IZN- I

It was also shown that G can be written as

G = Vd AN-1 4 , (18)

where 4' is a K x K unitary matrix that is a function of x, n = 1, 2,..., N-I and AN-I is a
K x K diagonal matrix with the first N - I diagonal elements equal to zero and the other diagonal
elements equal to one. Thus

z = 4"AN -I cXO (19)

We can write the K-length input vector in the main channel as

XM = S + XO, (20)

where s denotes the K-length vector desired signal subcode and x0 the K-length noise vector. Because
of linearity, the GSKN canceller can be decomposed as shown in Fig. 10. Here the left hand GSKN
canceller has only the desired signal in the main channel and the right-hand GSKN has only x0 in the
main channel. Note that the interior weights of the GSKN are not identical because of the different
main channel in each (actually only the weights in the main channel differ). Hence, the left-hand
GSKN output contains the perturbed desired signal output and the right-hand GSKN output contains
the output noise residue. For the forthcoming analysis, we consider only the left hand output that
contains the desired signal.

11
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Fig. 10 - Decomposition of signal and noise for concurrent processing

Figure 9 shows that the desired signal passes unperturbed through the front-end processor

GSx hv This is because the desired signal vector is a constant and, hence, is uncorre[ated with the
auxiliary channels. Thus the main channel weights in the GSmN canceller are zero. As a result, we
need only consider the effects on the desired signal by the back-end processor where all the auxiliary
channels are equipowered and independent random variables.

Finally, it was shown in Refs. 3 and 4 that if SD and sN-I are the input and output signal vec-

tors respectively, of a GSKNa, and the auxiliary inputs satisfy assumptions I through 5 (Section 2).

then s' = S- -I is'so has the following probability density function (POF):

P 0_ (f~K -)! (l q)N- 2N -N I s Cil (21)
(K -N)! (N -2)!

From this it is straightforward to show that for K > N,

EIs>l SN._,l = K - NKj shso (22)

and

Et ISISN_, 2 = L N _ 2(N-I) + (N K1j ISsoL (23)

and Ei- I denotes expectation.

12
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5. SINGLE AUXILIARY CROSS-CORRELATIONS

This section presents derivations for two cross-correlations of outputs of a 2-input GS canceller.
These expressions are fundamental in solving for the average pulse compression sidelobe increase
when N > 2.

Consider two separate augmented signal vectors u0 and v0. We assume that the desired signal
vectors, each of length L, are completely contained in u0 and v0, respectively. The augmented signal
vectors have length K. Thus L < K. We input u0 and v0 into separate GSK, 2 cancellers with a com-
mon auxiliary vector x (Fig. 11). The K samples (or elements) of x are random variables that satisfy
assumptions 1 through 5 (Section 2).

The output signal vectors of the respective GSK, 2 (Fig. 11) are denoted by ul and vI. We wish
to find El I u' vI 21 and Etl1ui Il2jIvI 1121 where for any vector c, 11c|12 = c'c.

GSK( 2 GSK,2

U1 vi

Fig. 11 - Parallel 2-input GS cancellers

From the previous section, we know that any K x K unitary matrix transformation of each input
vector into a GS canceller does not change the GS weights that are calculated thereafter. Further-
more, it is elementary to show that if ul and vI are the respective outputs of the unitary matrix
transformed canceller, then

and

Et I u'KvI 121 = El I ~uV-I 2j,

E'{Iui 112 lvi 1121 = Et1Ii 1 11'2 Iji 1121.

(24)

(25)

We use this relationship to simplify the input signal vectors u0 and v0 . It can be shown [16]
that a K x K unitary matrix 4 exists, such that

U = = 1' U0 = |uoII(l, 0, 0, ... , ()T, (26)

and

VO = 4vO = ||VoII(p, I _ |p I 2 , 0, o, . . ., 0)T, (27)

13
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where

nov0

, = l luaeN Hir

and we have defined iO and io as the unitary matrix transformed input vectors. Set

y = 4(x.

Note that because x is a normalized K-length multivariate compLex
Y = {y 37 Y2 7 , YxK is also.

circular Gaussian vector,

The K-length output vectors of each GSK, 2 are given by

- y uo
y' -ll l = n - . Y7 =

= -

-)~ j - yvoj
v1=v 0 -Y 

F4 K

L

L -K i IYtyJ -

where 1K is the K x K identity matrix. We can show that

Ul-l = 1L*a Oelld P I - yty - l.~- I 12

= Ilue2 I - 11 2 j,

IlLv 12 = 1leVO2 I- P tI' -\,1- p12 Y)21

YY I

It is shown in the Appendix that

El I u5v' 121 = E[ I iv-i 121 = I uy vo 2 L
z. t~~~~~~~~~1

_ - + I
K K(K±+1)j

K(-U + 1 )1 1UI

1K(K+ 1)

E(¶Iui q2 qV1 112 = Et ju16 2 lt'0 Vt = K(K °- + 1 il) 11VO111
r 2 1

½ K K(K+ 1)j

14

(28)

(29)

and

(30)

(31)

and

Y;y!]
YIY I (32)

(33)

and

(34)

(35)

(36)
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6. MULTIPLE AUXILIARY CROSS-CORRELATIONS

In this section, we derive expressions for two cross-correlations of outputs of an N-input GS
canceller. The input signal vectors uo and vo are as defined in the previous section. We input uo
and vo to separate GSKN cancellers with common auxiliary vectors xl, x2 , ... , xN-1 as illustrated
in Fig. 12. The K samples (or elements) of each auxiliary vector xl, ... xNl, are r.v.s that
satisfy assumptions 1 through 5 (Section 2). Let the signal output at each level of the respective
GSK, N be denoted by u, and v, n = 0, 1, ... , N - 1. We wish to find Et I uN_1VNl 1%2 and
PE[Iu- 112U1_ 112. it will be found .at this can be donerecursively.

UO X1 X2 iN-1

I I . .

Fig. 12 - Parallel N-input GS cancellers

Vo X 1 X 2 XN-1

I IA .

GS GSKN

|UN-1

To this end, as in the previous section, we multiply uo and vo
tion 4', such that the new input vectors uij and io are given by Eqs.
ward to show that

by a unitary matrix transforma-
(26) and (27). It is straightfor-

In = Et I 2 , E I vlujI2 j = EfItlini 2 IiinI12 ) (37)

for n = 0, 1, . . . -, N 1. In addition, each of the auxiliary input data vectors is multiplied by CD
such that in = xn, n 1, 2, . .. , N - 1. Note that each of the transformed auxiliary vectors also
satisfies assumptions 1 through 5 and is statistically identical to x,, n = 1, 2, . . , N - 1.

We redraw the configurations seen in Fig. 12 into the equivalent configurations seen in Fig. 13.
Here we show for each of the original GSK,N cancellers decomposed into two GSKN-1 parallel can-
cellers followed by a single GSK 2 canceller. The K-length noise vector into the GSK 2 cancellers is
denoted by y.

As stated in Section 4, we can write

UN2 = %0 AN-2 'tO U, (38)

i -2 = 4' AN -2 (Do o, (39)

y = o 1 1N-2 ''O Xl (40)

15
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UQ X2 X3 XN-1 Xi X2 XNl1

I . I IY I

GSKNI10K-

_ _N _ __2_ _ _ I V

GS1 ( 2

V1X2X3 XN-1 X1 X2 XN-1

I 1N7

lV-2 Y.

IN-1

,S 1N-
Fig. 13 - Equivalent representation of Fig. 12

where 'ta is a K x K unitary matrix that is a function of x2 , x , . . , XN-I and AN -2 is a K x K
diagonal matrix with the first N - 2 diagonal elements equal to zero. Ail other diagonal elements are
equal to one.

If we premultiply uN-2' VN-2, and y by the unitary matrix (DO, the resultants of the cross-
correlations we are seeking do not change. However, the number of independent and identically dis-
tributed (i.i.d.) elements in the auxiliary vector is reduced by N - 2 as indicated by Eq. (40). The
first N - 2 elements of 4'y, 4 'UN_ , and 4 'VNA2 are zero. Hence, it follows using the methodology
given in the previous section for finding cross-correlations for an arbitrary number of i.i.d. samples in
the auxiliary channel of a 2-input GS that the expectations of these cross-correlations conditioned on
X 2, . . XJN -I are given by

Elu %U.Nv-N I I - x2 , . , XNV - (41)

= - 2 , -'Y + 2 2 _ _ _ _ _ _ _ _ _ 

= | UN2VN 2 t K -'N + 2 ± (-N +2)(K -N + 3)

and

El Nl NI -lN-1 2 - XN-1 .

I . . 2 + _ Z -. _ 2 2 I I
JUN -. 0 N - I + 1{N-A2h(Nv-2h12 - Z_ + I -

(K- N + 2M(K - N ± 2) (K -N +2) (K N+2)(K -N+3)Y

16

(K -N +2)(K -N +3)'

(42)

I

I

UN-f

1�fiN - 2 1�2 jj�N _2 �12
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By integrating over the conditional r.v.s, we find

Et I U%..-1VNN- I']

= EIIU>N2vN-2 2 K2 - N + 2 + (K -N + 2)(K -N + 3)

+ E1IIUN-2II2IIvN2II1 (K - N + 2)(K - N + 3)

ELII|UN..Il|2IN.1II2I = Et IUN.2VN..2 1 (K- N + 2)(K-N + 3)

u 112112II -2, - 1ii 1 i - 2- 2I- --N- 114TV-2II 3 I K -N + 2 
1 ]

(K - N + 2)(K - N + 3) j

where we have dropped the tilde over the output variables in lieu of Eq. (37).

It is apparent that the desired moments can be found through recursion. Set

a0 = EJ I Ut 1 2I2

n= ElI|u0 I121Iv01l2 }g,

tz =I - 2 ± 1n , = K -n (K-n)(K - n + 1)'
and

h.. = 1

-it (K - n(K -n + 1)'
It then follows that the recursion equations are

an +I -= an an + bn/3n

and

n + I= I bna + aL0 .n

with initial conditions (I.C.)

ao = I uhoV 1 2 , 0o = IIuoII2I1voII2.

17
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We rewrite Eqs. (48-50) in vector form by defining en = (a0, fntr as

e,+ an= ; | f, I.C.: eO = I 112.12t 1 (51)
L n nJ lI"O I hkVOI

Thus solving for EN-)

FN-2 a, bn 1, UOVO 1

EN-1= riz r, a,] [ l;2 ]. 2 (52)

The desired cross correlations are given by the elements of ENN where El | u% -V -I N 2 and
E8IUN -I fI 2 Nv i_ 12i} are given by the first and second elements, respectively.

Define

At (KN) A 12(K, N) N-2 a0 b2
A = A 21(K, N) A22(K, N) n=O bn ao (53)

Then

I. 1L. 1 r.~ 21 A11(K, vN) %T 12 A t k' AiX In._ 11 211r. 112
a4 I "N-I IN -1~t]~ I 2J = A r, -) I *0 I "AfL.

t ' II/ 1f1U1 II'IJU

and

E{ PUN -I III2 NVN. _ J = A 21(K, N) iubvo, 2 + A2 2 (K, N) J~uou12%ivoN}2. (55)

We note that because of the symmetries in form of the 2 x 2 matrix A defined in Eq. (53), we
can show that A 2 1 (K, N) = A 12 (K, N). In fact, if we evaluate Eqs. (54) and (55) at u0 = VD, we
find that

A 11(K, N) = A22(K, N) (56)

and using Eq. (23)

AJ(K, N) + A ?(K, N) = I 2(N - ) + N(N -l) (57)
K K(K +l)

- cr~nc-r an nr'rin A TXA 'Y'Tfl~hYn'rnr I A rrtr iFks7I *1 DUBLIIUt IJ2tfd1RJ" S1L~ItI V 21A 1"*

We now derive an exact expression for the average adaptive pulse compressed sidelobe by using
the result of the previous section. The desired input signal vector is assumed not to be segmented
5; t ;i k rnt&innd ientireIly in th iicrmnentnd0 giunsl vpetor denoted hy qtf Fach auyiliarv channel

has K samples and these samples satisfy assumptions I through 5. Also, the desired signal vector is
normalized so that tISlj 2 = I

18
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Figure 14 shows the N-input canceller followed by the matched filter. Let s, be defined as any

column of the augmented ACF matrix. Then, an expression representing an output r of the matched
filter (match point or sidelobes) after cancellation is given by

(58)r = seSN-1

where SN -1 is the K-length output signal vector of the GSK, N canceller.

So X1 X2 XN-I

Fig. 14 - GS canceller followed by a matched filter

We define the average adaptive pulse compression sidelobe level associated with s, as SLa,
which is given by

E.I.S.sNI 121
SLa, = c 7 l~ i S ._ S. | 21 (59)

As K - or, note that SN -I - So and StL0 goes to the quiescent sidelobe level of so. This equals
S, so 1 2 which is given as SL ,.. We normalized, by the adaptive match point response

Et IS 1 s , just as I scso I would be normalized with the quiescent match point response
1 sbos1 2 

The denominator of Eq. (59) was evaluated in Refs. 3 and 4 and in Section 4 and is given by

Et sl Is'SN 21 = 1 2(N - 1) + N(N - 1)N ~~~K K(K +l)

- (K -N + 1±(K-N + 2)
K(K + 1)

19
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The numerator of Eq. (59) is evaluated by using the results of the previous sections. As stated
in Section 4, if so and sC are the main channel inputs to two distinct GSK,N cancellers with identical
auxiliary inputs, then the outputs of these two cancellers can be written as

sN1 = i Z so, (61)

SC, N-I = tAN 1 SC, (62)

where b is a K x K unitary matrix. Using Eqs. (61) and (62), it can be shown that

SC, N-ISN-f = ScSvN-1-

El 1 S'.SN- l21 = El! S'C,N-ISN-1 12),

Thus

and the analysis of Section 6 can be applied with u0 = s, and v0 = so-

Using Eq. (54) and the fact that IlsolK 1, it follows that

El ssN.s - 12! = A 51 (K, N) I SIsol 2 + A t2 (K, N) tsc 1 2.

Substituting Eq. (60) and (65) into Eq. (59) results in

SL0~ = K(K + 1)Ait(K, N) SLg 
|A N IV L - iv rix Vr 1- J)

We define

K(K + 1)A12(K, N)-IT XI A J'f i A I V ? ) C
krfl I T I 1Jk ) ft- I I 2

K(K + 1) A1 1 (K, N)

(K - N + 1)(K - I + 2)

to be the quiescent sidelobe factor and

K(K + 1) A 12 (K, N)

(K - N + 1)(K - N + 2)

to be the adaptive sidelobe perturbation. Note ASL 0(K, N) is constant
compressed pulse.

(68)

over all sidelobes of the

b. RESULTS

For the results to be presented, it is convenient to set Ns = N - 1 where N 0,zv is the number
of auxiliary channels. In addition, the number of independent samples per channel K is set equal to

20

(63)

(64)

(65)

(66)

(67)

ASLJ(K, N) =
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an integer multiple of Nas. Let K = MN,,, and Qo(M, Na,,,) = Q(K, N) where Q(K, N) is defined
by Eq. (68). To achieve good signal detection and noise cancellation, for most practical cases
M > 2, [2-5,17]. Figure 15 presents the quiescent sidelobe factor Qo(M, Nj) plotted in dB vs N0,o
and M. Note for all M 2 2 and Nag that QO(M, Na,) is less than and approximately equal to one.
Hence the approximation that QO(M, N) = 1 is valid in most cases. Reexamining Eq. (67) indicates
that for M > 2, the adaptive sidelobe level is equal to the quiescent sidelobe level plus the adaptive
sidelobe perturbation term given by Eq. (69) which we denote as ASLQ(K,N) ¶Is'1I2.

0. 0 

M=4 M=5,6 ... O

-1.0 M=3

M-2

m- 2.0 o1K=MN arx

-3.0
a

-4.0

5.0 I I I I .. __1 1 1 1 1 1 I
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0

Nau, NO. OF AUXILIARIES

Fig. 15 - Quiescent sidelobe factor vs Na,,x and N

Assume max s1 112 = 1. Figure 16 plots max ASL, vs Nags and M. These curves establish a
performance floor for the peak adaptive pulse compression sidelobes. For a given Nata and K (or
MNa,,), the adaptive compressed sidelobe level on the average is greater than the ASL0 calculated for
Natal and K. This figure shows that max ASLH decreases monotonically with M and N0"X. Hence,
two ways of decreasing the performance floor are to increase either the number of independent input
samples or the number of auxiliary channels. We also observe that more than 5 N0,X independent
samples are necessary to achieve a modest adaptive compressed sidelobe level of -25 dB for fewer
than 20 auxiliaries.

It is significant to note that even had the waveform been pulse-compressed into a single range
bin before the cancellation process, the maximum range sidelobe level after cancellation would be the
same as if the waveform had been compressed after the canceller. To see this, assume
s = (1,0,0, ... ,,0 )T This input vector corresponds to the output of a perfect pulse compressor; i.e.,
all of the signal energy is in one range cell (we are assuming a sampling rate equal to the waveform
bandwidth). If this waveform is input to the canceller, processed, and matched filtered with
s = (1,0, . .. ,0 )T, then Eq. (67) indicates that this input signal vector has maximum range sidelobe

levels equal to ASLQ(KN). Hence, the same perturbed sidelobe level results regardless of whether

21
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130 

-5.0

K=MN

-1 1 5.0=
-4 No M=2

U) - 2 5.0~~~~~~~~~~~~~~~~~~~~NI-

M=4

M=7

4 0. - lM w l l l 9 

NmI-

4 3 5l-,l0 g--

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 10. 1f.O

Nags NO. OF AUXILIARIES

Fig. 16- Maximum adaptive sidelobe perturbations vs N_,,, and M;
signal completely contained in K input samples

pulse compression occurs before or after cancellation. Again, note that we are assuming the
uncompressed pulse is completely contained in the K samples used to calculate the canceller weights.
Thus, it would seem desirable if L <C K to place the pulse compression after the canceller because
of the previously cited disadvantages (see Section 1) of having it before the canceller. If the
uncompressed waveform extends over a number of batches of K samples, it might be more desirable
to do pulse compression first to prevent the compressed pulse's canceller-induced higher sidelobes
from extending over these batches. A future study will address this issue.

The above analysis of pulse compression and canceller interactions can also be applied to quanti-
lying the canceller dcgradation caused by the presence of a desired signal in the samlels used to cal-
culate the adaptive canceller weights. If the desired signal has the power 4, after pulse compression,
then the average power residue from the signal in the K - 1 range bins not containing the signal can
be shown from our analysis to equal at most 42 ASL(KN) plus possibly the signal power resulting
t1o01 the quiescenit cUfmpressSU SiCBLUUCs. INow us LIJSqafbiIV) lilmigleL UV IIIUI-1 grLaLtL Uithia (1Lh 9uV-e-

cent output noise power level a in of the canceller. However, ASL0 (K,N) is a function of N and K,
and with increasing K can be made as small as desired. Hence, by using the values of or', N. and
di2 in in conjunction with Fig. 16, one can find the number of independent samples K needed such that
.2 A CT /V AfI isdh 2 AD of -2

We note that in some canceller schemes the adaptive weights are computed from the K/2 sam-
ples before and after a chosen sample. Hence the chosen sample itself is not used in the weight
evnluntion Thiq techninii-e'¼ adivantage is that if the desired siunal iS loralized to a single ranoe sam-

p[e the undesirable effect of cancelling the desired signal does not occur [3,4]. However, a noise
power residue from the desired signal is present in the canceller output samples preceding and follow-
ing the chosen sample because the signal is present in the weight calculation for these samples. This

22
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level occurs in the K /2 samples before and after the chosen sample. The maximum level of the
signal-induced canceller residue is equal to o2 ASL0 (K, N). Again, K can be chosen large enough to
be within 3 dB of amnn.

One final note: for some applications, the matched filter is replaced by a filtering scheme
whereby the range sidelobes are reduced at the expense of signal gain at the match point. However,
the results derived in this report are also valid if any filter other than the matched filter so is used.
We could replace the so seen in the "matched filter" block in Fig. 14 with a general weighting func-
tion given by the Llength vector, a with Ilements , a . L In our analysis, we would
replace the S matrix defined by Eq. (10) with an A matrix whose elements are given by replacing the
s s with a s in Eq. (10). The vector s, then would be taken to be any column in A and the analysis
follows as given.

9. SUMMARY

Performance results for the sidelobe level of a compressed pulse that has been preprocessed
through an adaptive canceller have been obtained. The adaptive canceller is implemented by using
the Sampled Matrix Inversion (SMI) algorithm. Because of finite sampling, the quiescent compressed
pulse sidelobe levels are degraded because of the preprocessing of the main channel input data stream
(i.e., the uncompressed pulse) through an adaptive canceller. An exact expression was derived for
the average adaptive pulse compression sidelobe level that was found to be a function of the number
of auxiliary input canceller channels N0,,,IU the number of independent samples per channel K, and the
given input code of length L. It was shown that K/N,,, can be significantly greater than one to
retain sidelobes that are close to the original quiescent sidelobe level (with no adaptive canceller).
Also, it was shown that the maximum sidelobe level degradation is independent of whether pulse
comnression occurs before or after the adantive canceller if the uncomuressed pulse is completely
contained within the K samples that are used to calculate the canceller weights. It was further shown
that this same analysis can be used to predict the noise power level at the canceller output, that is
induced by having the desired signal present in the canceller weight calculation.
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Appendix

DERIVATION OF EQS. (35)-(36)

Starting with Eq. (32), we first derive Eq. (35). Now

Ef I U;Yi,1 21 =11i0112 11 II12 1 2 E [( I, J2] (Al)

+ (1- ~1p2 ) E I YI12 IY2!12jj
+ 0 - I (yty,2 -

Note that the expected values of the cross-terms resulting from magnitude-squaring the right side of
Eq. (32) are zero because Y2 is zero mean. Now for p = 1, we can show using Eqs. (Al) and (23)
that

E' r1 - f 7 = 1 -K2 2
1~~ L ytyJ K K(K +l)(A2)

From Eq. (A2), it can be shown that

E (yy) 2
2

K(K + 1)

Now

(A3)

Ki- 1( YY)I , _1 K
k= 1 k,=l2

kI *k2

E I IYk, 12 1 t, 12Et WY4,
Because Y I, Y2, . .. , YK are identically distributed r.v.s, the terms in the first summation are all
equal and the terms in the double summation are equal. Let

a0= E ~j I l 2 jY2 12

1 (Y y)y2 , 
(A5)

25

E (Y[Y)2
(YY)2 (A4)



KARL GERLACH

Substituting Eqs. (A3) and (A5) into Eq. (A4) results in

K - 2 ±K(K -I)a=lI
K(K + I)

I
K(K +-l)~

El luivl 1 2 12 t o1 2 10 I 112 ) P1 2
2 1 1++(l .! I P2) 1

KK- + ~ l (IxI P C 1K (K 1 K(K + )

Equation (35) follows directly from Eq. (AS).

We now derive Eq. (36). From Eqs. (33) and (34)

I _

y y

IP*yt + -1 - IP 2 Y2 12

yty

+ I py I± + ' i Pl y I tY2 j 2
(y"y)2 j

Now the expectations of the individual terms of Eq. (A9) can be evaluated by using some of the pre-

vious results.

YIY K'
(A10)

+ I-P Y2

yIy
E IP*YI

121 1 '912£E1<

_ PI I I + (1 _ I P 12) 1K

K 

I

K9

and

E I P ly 12 t p Y I*Y2 )2

(y, y)
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or

Thus,

(A6)

(A7)

(AS)

V

(A9)

+(I- I1p2)E
f Y2 1 2

t It 2

(Al 1)

(A 12)

1��j2ljjjf = 1��Ig2�&q2
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Ip12E> tYj l4) + ( - lp,2)E tYI Y2I1

2 + (1 - 12) K(K + 1)'
=112K(K + 1)

- IK (1 + 1P12)
K{K + 1)

Thus,

Etluiil Ilv lvt - }ilI 2IKvoII2
- ± K(K + 1) 1PI) I (A13)

Equation (36) follows from Eq. (A13).
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